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Abstract. This paper proposes a methodology for authoring of intelli-
gent tutoring systems using human computation. The methodology em-
beds authoring tasks in existing educational tasks to avoid the need
for monetary authoring incentives. Because not all educational tasks are
equally motivating, there is a tension between designing the human com-
putation task to be optimally efficient in the short term and optimally
motivating to foster participation in the long term. In order to enhance
intrinsic motivation for participation, the methodology proposes design-
ing the interaction to promote user autonomy, competence, and related-
ness as defined by Self-Determination Theory. This design has implica-
tions for learning during authoring.
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1 Introduction

It is commonly believed that it takes several hundred hours of authoring effort
to create one hour of instruction for an intelligent tutoring system [3, 11]. What
is less commonly considered is that those are “expert hours,” namely the time
spent by highly trained knowledge engineers, instructional designers, and subject
matter experts. Typical authoring tools for ITS are intended to reduce this ratio.
However these authoring tools do not address the shortage of experts needed to
use the tools.

In our current work, we are trying a radically different approach to address
this shortage of experts. We address expertise by letting novices do the authoring
but then let other novices check the work to ensure quality. We address moti-
vation by disguising the authoring task as another task that novices are already
engaged in. We call this system BrainTrust.

The idea is that as students read online, they work with a virtual student on
a variety of educational tasks related to the reading. These educational tasks are
designed to both improve reading comprehension and contribute to the creation
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of an intelligent tutoring system based on the material read. After the human
students read a passage, they work with the virtual student to summarize, gen-
erate concept maps, reflect on the reading, and predict what will happen next.
The tasks and interaction are inspired by reciprocal teaching [30], a well known
method of teaching reading comprehension strategies.

The virtual student’s performance on these tasks is a mixture of previous stu-
dent answers and answers dynamically generated using AI and natural language
processing techniques. As the human teaches and corrects the virtual student,
they in effect improve the answers from previous sessions and author a domain
model for the underlying intelligent tutoring system. It should be pointed out
that while this process is domain-independent, the domain model that results is
specifically designed for a conversational, conceptual style of tutoring, described
in detail below.

In developing BrainTrust, several interaction designs were created and eval-
uated. The early designs were rigidly aligned with intelligent tutoring system
authoring tasks. Although early designs were efficient from an authoring stand-
point, they were perceived as boring in our focus groups, leading to concerns
about the motivation of students to participate. After iterating through many
storyboards, we adopted the principles of Self-Determination Theory [14] in order
to enhance the intrinsic motivation of users. Designing for intrinsic motivation
increases the amount of time users spend in non-authoring activities, which is
at odds with the goal of efficient authoring. However, we argue that the same
design choices have positive implications for the user’s reading comprehension
and learning.

2 Background & Motivation

2.1 Tutoring by Humans and Computers

It is well established that human tutoring is a highly effective form of instruc-
tion that yields better outcomes that typical classroom instruction. An early
meta-analysis of tutoring studies found that even novice human tutors enhanced
learning with a medium effect size (d = .4) compared to classroom and compara-
ble control conditions, an improvement of approximately half a letter grade [9],
and an early study of expert tutors reported a very large effect size (d = 2) for
mathematics skill training, an improvement of approximately two letter grades
[5]. Early studies like these were influential in driving the emerging field of in-
telligent tutoring systems [36], or ITS.

During the last 30 years, researchers have made some important progress in
developing ITSs that have the potential to seriously increase learning gains at
deeper levels of comprehension and mastery [18]. The ITSs implement system-
atic strategies for promoting learning, such as error identification and correction,
building on prerequisites, frontier learning (expanding on what the learner al-
ready knows), building on the zone of proximal development, student modeling
(inferring what the student knows and having that guide tutoring), modeling-
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scaffolding-fading, and building coherent explanations [37, 38]. The defining char-
acteristic of an ITS is that it tracks knowledge and adaptively responds to
the learner [43], using computational modeling techniques like production rules,
graphical models, and vector spaces. Recent meta-analyses have found that ITS
learning gains are indistinguishable from human tutor controls [21, 40], suggest-
ing that ITS research has sufficiently matured to make it broadly applicable to
K-16 education.

2.2 ITS Authoring with Natural Language

Many ITS have been developed for mathematically well-formed topics, including
algebra, geometry, programming languages [33], and physics [41]. Unfortunately,
developing mathematically oriented ITS is problematic in terms of development
costs, which can be as high as 100 hours of development time for 1 hour of in-
struction, even with special authoring tools [3]; see [25] for a review of emerging
authoring methods. However, a number of ITS have been built over the last
decade that tackle knowledge domains with a natural language foundation as
opposed to mathematics and subject matters that require precise analytical rea-
soning [23]. The learning gains on these natural language ITS are consistent with
large effects found in ITS meta-analyses [40]. and the development cost for these
natural language ITS tends to be very low, the lowest reported time being two
hours of development time for one hour of instruction [17].

These conversational ITS based in natural language share two defining at-
tributes (see [27, 29] for a review). First, they are based on naturalistic obser-
vations and computational modeling of human tutoring strategies embedded in
tutorial dialogue. A common strategy is the so-called five-step dialogue frame:

1. Tutor asks a deep reasoning question,
2. Student gives an answer,
3. Tutor gives immediate feedback or pumps the student,
4. Tutor and student collaboratively elaborate an answer, and
5. Tutor assesses the student’s understanding.

The five-step dialogue frame illustrates the other defining attribute of natural
language ITS, which is their interactive and collaborative nature: the tutor and
student are co-constructing an explanation together. According to theories of
learning, the interactive and collaborative nature of tutoring is what makes it
more effective than activities like individual problem solving [7].

From a computational perspective, the goal of a natural language ITS is to
help the student construct an explanation to a given problem. A full explanation
is has multiple points, which are commonly called expectations because they are
the expected parts of the correct answer. A natural language ITS manages the
tutoring session by keeping track of the expectations and directing the student’s
attention to expectations that have not been covered. The ITS directs the stu-
dent’s attention by asking questions, ranging from relatively vague pumps like
“What else can you say?” to hints like “What can you say about the force of
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gravity?” to very specific prompts like “The direction of gravity is?” Authoring a
natural language ITS consists of constructing a paragraph length correct answer,
generating questions for each expectation in the paragraph, and using text simi-
larity measures like latent semantic analysis [20] to judge the difference between
the student’s answers and the expectations. The correct answer, expectations,
questions, and vector space for latent semantic analysis are collectively referred
to as the domain model of the ITS – the key components that must be authored
every time a new topic must be covered. Even so, one of the reasons that natural
language ITS are relatively easy to author is because the authoring is done in
natural language.

2.3 Conversational ITS Authoring and Reading Comprehension

Recent attempts have been made to fully automate the authoring of natural lan-
guage ITS using natural language processing technologies like semantic parsing,
coreference resolution, automated inference, and ontology extraction [26, 28, 29].
The core aspects of automation were keyword identification, concept map gener-
ation, and question generation using manually generated summaries (equivalent
to correct answers and expectations) as resources. After the keywords, concept
maps, and questions were automatically generated, they were checked manually
and corrected for errors. The BrainTrust approach extends this work by using
human computation to correct errors.

BrainTrust maps authoring to human computation tasks using the key in-
sight that keyword identification, summarization, concept map extraction, and
question generation are not just authoring tasks but also reading comprehension
strategies. Several meta-analyses have concluded that strategies like these should
be taught explicitly to maximize reading comprehension, particularly for low-
achieving students who lack the knowledge and skill to effectively comprehend
reading at their grade level [15, 22]. A specific program of multiple-strategy in-
struction is reciprocal teaching [30]. In this program, as instructors read the text,
they think aloud to model their comprehension process to the student including
their reasoning for when to use each strategy. In a classic modeling-scaffolding-
fading paradigm, the instructor and student take turns as the student gradually
learns the strategies and practices them while the instructor provides feedback.
More specifically, students read paragraph by paragraph and generate questions,
summarize, clarify terms and concepts, and make predictions about what is com-
ing up in the text. This practice becomes a dialogue as the instructor comments
on and contributes to the student’s questions, summaries, and other activities,
or as other students make similar contributions in small group sessions.

2.4 Human Computation for Knowledge and Language

Recently a new subfield of computer science has emerged, known as human
computation, that studies how to represent computationally difficult tasks so
that humans will be motivated to work on them [1, 31, 35]. Human computation
can be extremely powerful. In a recent example, a human computation game
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called Foldit was used to find the lowest energy form of a protein causing AIDS,
a long-standing problem that had defied solution for nearly 15 years [10, 19].
Foldit makes use of humans’ spatial reasoning abilities and motivates them to
work by presenting the task as a game. However, this simple description belies
the complexity involved in representing human computation tasks and executing
them to produce a desired result. In essence, a human computation is a step in a
larger algorithm that distributes tasks, checks their quality, and aggregates them
into a solution. Much of the advantages and challenges of human computation
stem from the issue that a human is “in the loop,” because while humans are
capable of solving complex and difficult problems, they are also autonomous
beings with their own motivations and physical limits.

Several human computation games have been proposed to create knowledge
representations and language data. FACTory is a human computation game
designed to validate the truth of propositions in the Cyc Knowledge Base [12].
Users vote on the correctness of a proposition’s natural language interpretation,
for example, “Conjunctivitis is a symptom of earache,” until enough users agree
that FACTory stops asking for confirmation. Verbosity is a human computation
game that presents itself as a two-player guessing game where each player has a
secret word and a set of sentence template cards and chooses the card that will
best allow the other player to guess the word, e.g. the word may be “cat” and the
played card may be “tiger is a kind of ” [1]. A related game, 1001 Paraphrases,
uses a similar template providing strategy, except that its goal is to generate
alternative phrasings of statements rather than facts [8]. Human computation
systems like these often present previously proposed solutions to new users to
improve upon, a process called iterative improvement in the human computation
literature. Because even simple tasks, such as determining if an image includes
the sky, can have non-agreeing “schools of thought” that systematically respond
in opposing ways [39], it is preferable to use Bayesian models of agreement jointly
to determine the ability of the user (and their trustworthiness as teachers) as
well as the difficulty of the items they correct [32].

Currently underway is a human computation project called Duolingo, whose
stated purpose is to help people learn a language while simultaneously translat-
ing the Web [2, 35]. Thus Duolingo appears to make use of two human computa-
tion motivators previously described [31]: altruism and implicit work. Altruism
stems from helping others by translating the Web. Implicit work means the work
achieved as a side-effect of the main task; in this instance the implicit work of
learning the language is translation. In Duolingo, users translate sentences from
a foreign language into their own language, with some computer support that
provides dictionary translations of individual words. As users proceed, Duolingo
increases the complexity of the task. A recent review of Duolingo praised its
use of hints and feedback in guiding the translation process but also questioned
the use of a translation-based approach to learning a language, an educational
approach that fell out of fashion about 50 years ago [16].
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3 Designing BrainTrust

3.1 Motivating Human Computation with Virtual Students

Designs for human computation include user motivation to participate, typically
focusing on pay, enjoyment, altruism, reputation, and implicit work [31]. Psy-
chological theories of motivation contrast intrinsic and extrinsic motivation, such
that of the typical motivators used in human computation, only altruism (with-
out recognition) and enjoyment would qualify as intrinsic motivators [14]. This is
an important distinction because numerous experiments have found that intro-
ducing extrinsic motivators, like pay, can actually diminish intrinsic motivation
for an activity [13]. Therefore, if the goal of BrainTrust is to increase learning
and the desire for learning, it is important to design for intrinsic motivation
rather than extrinsic motivation.

Self-Determination Theory identifies three factors influencing intrinsic moti-
vation: competence, autonomy, and relatedness [34]. Competence is enhanced by
maintaining optimal challenge so that participants achieve success and positive
feedback. Autonomy interacts with competence, enhancing motivation when the
participant feels in control. In contrast, when the participant feels controlled,
pressured, or manipulated, autonomy and motivation decrease. Relatedness oc-
curs when the participant is socially connected to others who pay attention to or
even care about what the participant is doing. By supporting competence, au-
tonomy, and relatedness, a human computation design should maximize intrinsic
motivation.

The BrainTrust approach to maximizing intrinsic motivation is to present
the human computation tasks through a virtual student, sometimes called a
teachable agent [4], as shown in Figure 1. The virtual student’s performance on
these tasks is a mixture of previous student answers and answers dynamically
generated using AI and natural language processing techniques. As the human
teaches and corrects the virtual student, they in effect improve the answers
from previous sessions and author a domain model for the underlying intelligent
tutoring system. From the perspective of Self-Determination Theory, users may
demonstrate competence if teaching the student presents an optimal level of
challenge, experience autonomy if their interaction with the student is loosely
directed, and feel relatedness because the student is presented as a animated
conversational character. Although previous research has not directly assessed
the effects of virtual students on intrinsic motivation, studies have shown that
students spend more time with virtual students, attribute mental states to them,
and are more likely to acknowledge their own errors [6].

3.2 Designing Motivating Interactions

We do not claim that simply adding a virtual student makes the design intrinsi-
cally motivating. If the reading comprehension tasks themselves do not reinforce
competence, autonomy, and relatedness, then the design will fail in this regard.
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Fig. 1. BrainTrust during a concept mapping activity

And it is these reading comprehension activities that individually represent spe-
cific human computation tasks.

As we developed BrainTrust’s human computation tasks, we iterated through
six different interaction designs before settling on one that best supports intrinsic
motivation. Because of space limitations, we will only describe the first and
the last designs, as their differences best illustrate how competence, autonomy,
and relatedness can be enhanced. The earliest design was rigidly aligned with
intelligent tutoring system authoring tasks. The original storyboard proceeded
as follows:

1. Virtual student reads the selected paragraph aloud.
2. Virtual student summarizes the material by selecting key sentences.
3. Human corrects the summary.
4. Virtual student generates questions and answers on important facts.
5. Human corrects or adds questions and answers.
6. Virtual student clarifies by identifying key concepts and linking them in a

concept map.
7. Human corrects or adds key concepts and links.
8. Next paragraph is selected and process is repeated.

Although this earliest design was efficient from an ITS authoring standpoint,
it was perceived as boring in our focus groups, leading to concerns about the
intrinsic motivation of students to participate. Using Self-Determination Theory
as a lens, we can identify several design weaknesses in this storyboard. First, the
interaction is very mechanical, with the virtual student controlling as much of the
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interaction as possible, leading to low autonomy. For example, summaries involve
sentence selection rather than free-response. Likewise questions are generated
complete with answers, so again little opportunity for free-response. Second, user
competence is diminished because the virtual student is essentially asking the
user to do the same kinds of tasks repeatedly: the questions are just rephrased
pieces of the summary, and the keywords/concept maps are just rephrased pieces
of the questions. Finally, relatedness is reduced because the virtual student gives
the user very little opportunity to inject their own ideas, and as a consequence
creates fewer opportunities to learn from teaching the virtual student [7]. The
first design, perhaps counterintuitively, has low intrinsic motivation precisely
because it is closer in spirit to typical human computation tasks like template
filling [1, 8, 12] but without providing a game-like metaphor to make the task
more enjoyable.

The final design enhances intrinsic motivation without gamifying the task by
rethinking autonomy, competence, and relatedness. To make the task more mo-
tivating and useful to the user, we accepted that some of the activities the user
performs will have low utility to the end goal of creating an intelligent tutoring
system; however those same activities will have high utility to the goals of en-
hancing intrinsic motivation and helping the user comprehend the text they are
reading. The final design is inspired by the methodology of reciprocal teaching
[30], which provides a natural interaction paradigm in which these reading com-
prehension activities can be learned and practiced. The final storyboard proceeds
as follows:

1. Human reads the selected paragraph, and, if desired, activates the virtual
student.

2. Virtual student voices the gist, or topic, of the paragraph.
3. Human corrects the gist as free-response.
4. Virtual student generates open ended, authentic questions.
5. Human provides their answers as free-response
6. Virtual student clarifies by identifying key concepts and linking them in a

concept map.
7. Human corrects or adds key concepts and links.
8. Virtual student predicts the topic of the next paragraph.
9. Human corrects as free-response.
10. Next paragraph is selected and process is repeated.

In this design, autonomy is increased because all tasks are open-ended and
are answered using free-response. Open-ended tasks like gists, authentic ques-
tions, and predictions allow for interpretations and personalized responses, and
free-response options for these tasks further allow for autonomy. Competence
is strengthened because the tasks are now decoupled from each other, and the
tasks themselves are both more challenging because they require free-response
as well as less evaluative because they allow for personalized responses. Related-
ness improves through open-ended, authentic questions [24], such as “What are
your beliefs about gun control?” which invite the user to contribute their own
ideas and interpretations of the text. Both of these features make the tasks less
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about the facts of the text and more about the global meaning of the text – a
key aspect of reading comprehension.

Clearly, making the tasks open-ended and free-response makes the corre-
sponding answers more difficult to use for ITS authoring. The tasks of gist,
authentic questions, and prediction, do not clearly correspond to ITS authoring
tasks like summarization and question generation. Indeed, the core piece of ITS
authoring is now largely encapsulated in the concept map. This is not a prob-
lem for ITS authoring as concept maps can be used to generate the questions,
summaries, and other materials needed for a natural language ITS [26, 28, 29].
On the other hand, the shift from the earliest interaction design to the final
design does illustrate the tension between making the human computation for
authoring efficient in the short term and keeping the process viable in the long
term by enhancing intrinsic motivation. Similar trade-offs occur when human
computation is embedded in actual games with extraneous game play [42].

However, BrainTrust seems to differ from previous human computation sys-
tems in the sense that the tasks users engage in have three side effects: the tasks
improve the users’ understanding of the texts they wish to read, the process of
correcting the virtual student improves reading comprehension skills, and the
tasks create knowledge representations and content for an intelligent tutoring
system. In other words, the tasks help students understand what they read,
improve their reading skills for the future, and use their efforts to help other
students in the same way.

4 Conclusion

This paper presented a methodology, called BrainTrust, for authoring of intelli-
gent tutoring systems (ITS) using human computation. In BrainTrust, as users
read online, they work with a virtual student on reading comprehension tasks
that are aligned with authoring tasks in natural language ITS. This approach
circumvents the shortage of experts who are typically needed to create ITS by
leveraging novice users who are already engaged in reading a text.

Although our earliest design included superficially motivating components
like a virtual student and tasks inspired by reciprocal teaching, it did not care-
fully address the intrinsic motivation of users. Using Self-Determination Theory,
we presented an analysis of the earliest design and our final design in light of the
core principles of autonomy, competence, and relatedness defined by that theory.
To include these principles, the final design included more open-ended tasks with
free-response options, many of which are not directly applicable to the task of
authoring a natural language ITS. However, the open-ended tasks bring the final
design closer to collaborative dialogue that various studies suggest is optimal for
learning [7, 24, 30]. Thus designing BrainTrust for intrinsic motivation may also
optimize for student learning, not only by increasing participation in authoring,
but by making participation itself a beneficial learning experience.
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